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ABSTRACT

(Distribution Limitation Statement No. 2)

The response of a layered half-space to a progressing
normal surface pressure is evaluated. The half-space con-
sists nf a single layer of a locking material that acts
elastically after compaction, and an underlying elastic
material. The surface pressure moves with a constant velocity
V, which is subseismic with respect to the speed of wave
propagation in both the upper layer after compaction and the
underlying half-space. It is assumed that a steady-state
exists with respect to a coordinate axis attached to the
moving load.

The essentially subseismic layer - subselsmic half-space
geometry leads to an elliptic problem that is solved by a
finite difference iterative technique. A computer program
for evaluating stresses and velocities at points in the medium
is available and results are presented for a typical con-
figuration of interest.
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SECTION I

INTRODUCTION

This paper presents a study of the problem of a

progressing normal pressure on the surface of a layered

half-space. The half-space consists of a single layer of -

a locking material that acts elastically after compaction

and an underlying elastic material. The surface pressure

moves with a constant velocity V, which is subseismic with

respect to the speed of wave propagation in both the u-ppet

layer after compaction (c > c > V) and the underlying
1 1

half-space (cp > c S  > V). It is assumed that the load

2 2

has been moving steadily for a long time so that a steady.-

state (of plane strain) exists with respect to a coordinate

system attached to the moving load. The theory is dev,eloped

for two types of progressing pressure loadings; (a) a case

in which the progressing pressure is a step function in the

coordinate x + Vt over a range of very large, and then

decays to zero at = , and (b) a case in which the

progressing pressure has an exponential decay in the

coordinate = x + Vt, Fig. 1.

It should be noted that the material description for

the layer assumes a locking material that, after compaction,

acts elastically. This mathematical model is an approximation
th ayrasue



LARGE

V,

X

z z

FIG. I OA DI NG CONDITIONS

REAL MATERIAL

APPROXIMATE MODEL

FIG. 2- APPROXIMATION OF MATERIAL BY

LOCKING -ELASTIC MODEL



flf

to certain types of rcal materials as shown ir Fig. 2. The

locking-elastic material has been previously s'tudied by Bleich,

Ref-. [].

In a previous paper, Ref. [2], the steady-state problem

for a superseismic layer - subseismic half-space conflgqratibn

was studied. For that case, the problem was of a mixedf type,

(a) hyperbolic in the superseismic layer and (b) elliptic

in the underlying half-space. Consequently, signals from the

underlying half-space outran the advancing surface pressure

and the interaction stresses between the layers,, i.e., a
Zz

and a extended over the entire plane -- < < . The

entire layer and half-space were stressed, including t ha't

part of the region which was ahead of the moving load'. Sharp

shock fronts (P and S) were present in the superseismic layer,

only behind the leading front of the moving load, Fig. 3.

The present problem differs from the one treated i$n

Ref. [2) in a significant way, which is best understood by

cons!dering the layer to consist of a nonlinear hardening

maie~i., as indicated in Fig. 2. While the underlying half-

space io subseismic in both the present case and in Ref. [21,

the Licuation in the layer is superseismic at low stress

levelz, but subseismic at sufficiently high stress levels.

In the present problem which considers the nonlinear material

and a high stress level, there will, therefore, be a leading

3
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shock corresponding to the first P-front in Fig. 3, but there

will be -no fufther shock-, to the right of (behind) this

!leading front. Ahead of this shock front, the stresses are

inhe.ently low. In the case of the locking material, Fig. 2,

the shock corresponding to the first P-front in Fig. 3 is now

identified with a compaction front, Fig. 4. The "low" stresses

ahead of the front are assumed to vanish to permit the use of

K' . the locking concept. It will be further assumed that this

cdmpaction front is plane. This assumption is correct

accoring to Ref. [1] in an infinite locking-elastic medium

subjected to a progressing step wave, but qot for a decaying

pressure pulse where it is curved as indicated in Fig. 4. The

curvature of this front is, however, not important if the

layer thickness is not too large compared to the distance

describing the decay of the applied surface pressure, The

inclination of the locking front in the present analysis will

be selected to be equal to the one found in Ref. [1] for a

step pressure of intensity P = P0 " This leads to the con-

fig.urat-ion shown in Fig. 5. The problem becomes one of an

irregularly shaped half-space with two layers, both of which

are subseismic with respect to the moving velocity V, i.e.,

V is smaller than the velocity of dilatational (P) and

equivoluminal (S) waves, in both layers. Hence, the dif-

ferential equations of motion in both layers become elliptic

There is a transition level at which the stress is in-

sufficiently high and shear shock may occur. It is
assumed in the present problem that the stress level is
sufficiently high so that this does not occur.

44



v

STRESSED SV,>Cp>C S FRON
REGION P FRONT_/

STRESSED REGION C p2> c >v
OUTRUNNING WAVES

FIG. 3- SUPERSEISMIC LAYER- SUBSEISMIC HALF SPACE

GEOMETRY OF REFERENCE [2]

APPROXIMATELY
UNSTRESSED MATERIAL

V

t-APPROXIMATED PLANE COMPACTION FRONT

CURVED COMPACTION _. Cp,> >
FRONT CP/ >CSI>

STRESSED COMPACTED
MATERIAL Cp Cs > V

STRESSED HALF SPACE 2

FIG.4 - GEOMETRY OF PRESENT PROBLEM



I oA

and the solution reduces to that of an elliptical boundary

va-lue problem in the irregul'ar domain of Fig. 5.

The elliptic nature of the problem leads to a system of

simultaneous linear algebraic equations on the displacements

at e:ach point of a finite difference grid that covers the

'tpper lay.er and the underlying half-space. A crucial approxi-

mate procedure, which is used in the numerical solution of the

boundary value problem, should be discussed at this point.

The acktual domain of the boundary value problem discussed above

ext-ends to infinite in three directions, i.e., -- < and

0< z < -, Fig. 6. To obtain a finite number of algebraic

simultaneous equations in the numerical analysis, the infinite

domain is arbitrarily reduced to the finite domain ABCDEF as

shown In Fig. 6, by assuming that the field quantities along

the boundaries of the rectangle BFED are same as those that

wou ld be produced if a half-space of the underlying material

was subj'ected to the same progressing pressure signal as in

the actual problem, Fig. 7. Hence, it is assumed that the

values of the field quantities along the boundary BCDEF of

Fig. 6 will be those which occur in the same locations for

the geometry of Fig. 7. These field quantities may be obtained

by a direct integration of the Cole-Huth solution, Ref. [3].

in a similar manner, the field quantities on the line AB are

approximated by values from the locking-elastic media study

of Ref. El] for the step pressure applied on an infinite half-

6



v-

ASSUMED STRESSLESZ REGION, z PAECMATO RNpSTRESS FREE BOUNDARY Cp >C 5>-V (SUBSEISMIC ELASTIC)

C~>.5>-V(SUBSEISMIC -ELASTIC HALF SPACE)

FIG. 5 -APPROXIMATE GEOMETRY FOR PRESENT PROBLEM

V

A

Co I

I E __

FIG. 6--BOUNDARY CONDITIONS AT LARGEAN Z



A. - Y

,~B

- -c

IF

'FG 7,, BO-~YCNIIN NHL PC O AG N

v~

-,NO -COPACTD COPACTD ELSTI

UPPR EGON MTEIA
-~ H

FIG.8-POUNDAYPCODIMTIOIN HFO SOPACTFOR LARGET IN ADEZ

V

6N.

TRUE CMPACTOND CODTIN O OMATINFRN



space and by an integration of the Cole-Huth solution for a

decaying pressure.

In defense of the approximation at the boundaries, it is

noted that it is inherent that the stresses at far away

boundaries do not effect the solution in the vicinity of the

shock, i.e., the only region in which a steady-state solution

has actual meaning. A computer .code for the solution of the

problem in the manner outlined has been developed and is

available. Numerical results are shown for a typical con-

figuration of interest.

Section II presents the equations for the basic formu-

lation of the problem. The method of solution and some

comments on the computer code are given in Section III.

Finally, Section IV presents some numerical results and con-

clusions.

This paper is one of a series of steady-state solutions

that have been obtained for various elastic and inelastic

materials, Refs. [4]-[8]. While the solutions have been of

interest in themselves, an additional purpose was to provide

check results for several of the large finit( lifference and

finite element computer codes, which are presently being used

to study ground shock problems in elastic and inelastic media.

Although these codes are primarily used for the solution of

transient, rather than steady-state problems, they generally

can also be used to model steady-state situations of the type

considered here.

J
9
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SECTION II

IJ
FORMULATION OF THE PROBLEM

Cohs-ider the geometry shown in Fig. 5 in which a layer

of thickness H of a locking-elastic solid, overlies a half-

space of a second elastic material. The layer is composed

of a locking materiai, which, upon reaching a certain compacting

strain e , thereupon acts as a linear elastic homogeneous andC

isotropic iaterial, Fig. 1. The surface z = 0 is subjected to

a normal surface pressure which moves with a constant velocity

V, The velocity V of the moving load is subseismic with
+4

respect to dilatational and equivoluminal wave velocities both

in the compacted layer, i.e., cl > cS > V, and in the under-
1 1

lying half-space, cP > cs > V. A system of Cartesian

2 2
coordinates is used in which z is normal to the layer surface

and x is parallel to the surface in the direction of the

moving load. The layer 0 < z < H is designated as region I

and the half-space z > H is designated as region 2. The

corresponding elastic constants are indicated by the proper

subscript.

For both the compacted elastic layer and the underlying

half-space, the elastic stress-strain relations and the

equations of motion for this plane strain problem are written

ad

10
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2 G v u Cxx= )(1-V) + v aqz, (1)
xx 1-2vax a

2G au v2

*zz (1- 2 v)fv 3- + (i-v) a (2)

t 1)v + au
oxz xGf - z (3)

Ox ~ + zXX + XZ (4)
ax 3z

zz = (5)
hx + 9z

Eliminating the stresses between these equations, the dis-

placement equations of motion become

--u + (2+ + UJ 3 2u ~

(A + 2  
(6)

+ 2j) a 2  axaz a 2  at

az 2  aXaZ 2  t2

For the steady-state problem under consideration a Galilean

transformation x + Vt is used to replace x and t by

means of the relations

a-v (8)

The stress-strain relations and the equations of motion

become

4711



c = 2 (G Du + V av ,xx ( ) ( -) + az(9)
2G au u

.au(2al u + (1 ;2v3] (10
-z

= G z (11)

(A + 2P - DV2  a2  +(+ a  a 2  (12)(12

)a +(2 aa az 2

a2 2 2
( + 211) a i + ( + ) aa + ( - P 2v) 0 (13)

az az

Not-e that

2 A + 2j 2 _(

cp c (14)

Equations (12) and (13) may be written in the form

2 2 2
A a2 + B --- + c = 0 (15)a 2z az 2

A 22 a2
D a2v + E a +F 2 0(1

az2 a~az aE2

where

2~ -2 2iA= C2  V 2  
D c cP

2 2
C E= B (17)

2 2 2C =c F=c - V
S S

For the subseismic problem under consideration, the

coefficients of Eqs. (17) are all positive and hence, the

system of equations, Eqs. (15)-(16) are elliptic in nature.

Consequently, the specified boundary conditions on the

boundaries of the domain will uniquely determine the

12



solution of the equations of motion in the interior of the

domain. The boundary conditions are developed below.

From Fig. 4, it is seen that boundary conditions must

be specified on the surface z=O, on the compaction front of J'
AA

the locking-elastic layer, on the surface z=H -of the half-

space ahead of the compaction front and on the layer half-

space interface, z=H, behind the compaction front. The

requirements un the stress and displacement quantities at

= c and z = will be discussed in the ,section on the

numerical ,omputation of the disp~acements and stresses 'by

means of a finite difference grid which is superinposed on

the medium.

The boundary conditions on the surface z=0 are given

by the relations

(E, z=0) = -PU (,) (8)zz

a (CY z=0) 0 "(19)
(4z

while on the surface z=H ahead of the compaction front

(i.e., negative)

C; (E, z=H) 0 (20)

a (E, z=H) 0 (21)
hz

The boundary conditions on the layer interface z=H behind

the compaction front require the continuity of stresses

and eisplacements:

13
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Al

- u1 ( , z-H) - z=H)

, V1 (4, z=R) v2 (4, z=H)

- !(22)

CF ( z=H) a a=H

a ~,z=H) = az=H)
-z,2

The problem of a step load moving on the surface of a

ha:f-space of a locking material which upon compaction,

b'ecomes elastic and subseismic , i.e., c> > c S' V, has
2 2

been solved in Ref. [1]. It was showrt that a stress dis-

continuity in the form of a compaction front occurs in the

mate-rial and moves with the progressing surface pressure.

For a step wave surface pressure loading, the compaction

front will be plane, and the stress on the front will be

normal to the front with no tangential component. The

normal stress at the compaction front is given by the

relat ion.

(I-V)P

N - v + (i-2v)8 cot 8 (23)

where 8 is the angle of the front with the surface z=O,

Fig,, 5a. The tangential stress on the compaction front is

zero.

=0 (24)

The material after locking must have both its dila-
tational and equivoluminal velocities greater than the
velocity V of the progressing load. This is a neces-
sary condition for the continuity of the material
behind the compaction front, i.e., a condition that
prevents the locking front from separating from the
material.

14



The angle of inclination 0 of the compaction front is given

in terms of the velocity V of the moving surface pressure

2 P (i-V)V2 = - i (25)pc V sin 2O + (1--2V) (2)n- coa

where

0 < < C2.6)
cr

where the critical angle c is defined by the relation
cr

tan(2r)

a = -2(1-2v) (27)8cr 1

The fact that no steady-state solution is found if the

velocity V is less than a critical value V corres.pondingcr

to 0 is discussed in detail in Section III of Ref. [I]jcr

and will not be repeated here. It will be assumed that

the 0-V relation for the present problem is such that a

steady-state solution exists and that the locking front

meets the leading edge of the moving pressure loading at

the point A in Fig. 5a.

As discussed in Section I of this paper, the com-

paction front for the present layered g'eometry is approxi-

mated by a plane front a3 shown in Fig. 5b. The boundary

conditions on this front are given by the relations

aN( 'z) - + (I-2v)O cot (28) r

a T(,z) = 0 (29)

15
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where and z are such that

tan- (30)

aaid the relation between and V is given by Eq. (25).

'The method of solution of this boundary value problem

is, dIcussed in Section III.

16



SZ rION Ill

METHOD OF SOLUTiO

The equations of motion, Eqs. (15)-(16) ar integrated

numerically at the pivotal points of a finite differexce grid-

work which is superimposed on the layer - underlying haif-s'pVce

geometry, Fig. 9. For the elliptic problem being solve-d,-these -,

differential equations are transformed i-nto a set of simultaneous

linear algebraic equations in the displacements u, and v. As

described in Section I, this infinite system of equations is

truncated by applying approximate boundary conditions at all

pivotal points which lie on the boundaries of a rectangle; these

boundaries are located at a sufficiently large distance from t'he

area of prime interest, i.e., the neighborhood of the compaction

front in the layer and the shallow portions of the underlying

half-space. Once the displacements are obtained, the stresses

can be calculated at the corresponding grid points by means of

finite difference operators.

The method of solution for the system of simultaneous

algebraic equations was dictated by the available core size of

the CDC 6600 computer that was utilized. An M x N gridwork of

pivotal points leads to an unsymmetrical set of algebraic

equations in 2MN unknowns. The band width of the equations

are of the order of 4N and the core required for a standard type

of inversion solution is of the order of 8MN2 . For the larae

171: _______________
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number of points required to obtain acceptable detail in the

present problem, the direct inversion approach became im-

practicable. Consequently, an alternative iterative technique

was used in which the displacements u and v at each point in

the n+l approximation were calculated in terms of the corre-

t-h
sponding values in the displacement field at the n approxi-

mation, as required by the appropriate finite difference

operator at the pivotal point in question. In this iterative

procedure, only 2MN of core was required and hence, this

procedure was adopted.

A brief summary of the various finite difference

equations which were utilized in the solution is presented

in this section.

The partial differential equations, Eqs. (15)-(16) may

be written at all ordinary interior pivotal points of the

grid in terms of unequal.y spaced finite difference operators.

Using the geometry of Fig. 10, the expressions for the

various second derivative operators are given by

[i+llj] - [i-11j]
D hA + hr 3) i

r~+ (31)

D = ii'+l] - [1,1-l] Iz h + hb  .
a b

D 2  2

D =+ h) [h r[i-lJ] - (hr + h+ hi,j] +

* + h [i+l,Jl] (32)

19
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2- 2

~D 2  [h h hfi,i-lI (h + h )[i,j] + h [i,j+l]J1 (33)
z z h h+ h ba b a

a b a ba

(h9 + h ) (h + h [i+lI'+l1 [i+1,j-lJ - i-l'j+iI +

+ fi-l'j-1]1 (34)

Substituting Eqs. (3l)-(34) into Eqs. (15)-(16) leads to a

set of two simultaneous linear algebraic equations on the

values of the displacements u and v:

+ U+
b i h r+ h i-lj hr h iX h r(h r+ h) i+l~j

+ 2h hB(v+ 1 i--v + v +
2(h r+ h (h a+ h b) (~~i+l,j-l iIJl ilj-

+ C uC C 0(5
h - (h + h ijl ha b *~ + ibha b uh (5

a a hb) a' b hb~h~h +h) i"j+1

F F F
(h + h ) Vijl h h h (h +

a a b) a b v hb ha +'b)ijl

2( +U h )( + +
a~ ( b uuJ 1  i+lj.4 u-.i 1 +1  +Ujlj 1 ]

hz h r +hz) i-l,j h r h~ vili h r (hr + 1~ +l,j

Special formulas are of course required to express the

various conditions at the boundaries of the problem. A brief

description of the boundary conditions in finite difference

form follows.
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in Boundary conditions at the compaction front

At-the compaction front in the locking material layer,

;the normal stress is given by Eq. (23) and the tangential

tress Is set equal to zero. These coiditions are written

-in terms of the displacement components and in the ,z system

of coordinates. Writing the stress-displacement relations in

the ftormal-tangential coordinate system, Fig. 11,

N T 2 N (37)
N aN T N

a [~ 114Du + u (38)
T xT axN

And using the Nj - g,z transformation relations,

uN = -u sin 8 + v -os 8

UT  = -u Cos - v sin 8

(39)

= -sin 
7 = cos 8

BXaN  x N

a- =-Cos 8 n = -sinB
ax T  axT

the boundary conditions become

(L + V)P - (Q cos 28 + R sin 28) = 0  1
(40)

Q sin, 20 - R cos 2B = 0
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rr J - - c - r

where

P u + v z

Q = -Vz (41)

=u + v
z

Simplifying Eqs. (40) to the form

(+ )P- R = 0
sin' 213

(42)
Qsin 20 R cos 2B =0

and substituting the finite difference operators of Eqs. (31)

for the displacement derivatives in P, Q and R, Eqs. (42) caii

be solved for the displacements u and v,. thus giving tjhe

boundary conditions for the pivotal points which lie on the

compaction front.

2. Boundary conditions on the surface z=O and on the interface

z=H (interface ahead of the shock front)

The boundary conditions on the surface z=0 are givan by

Eqs. (18)-(19). Using the finite difference operators of

Eqs. (31), these conditions are written in terms of the

boundary displacements as

= u i,j+ I + K 2(V i+l, j  Vilj) (43)

v K'( + KP (44)vi, j  3 Ui+lj Ui.l, j + i,j+l 5

23If



where

4 h ~ K KA K=~hb  K2) hb

2 h + h K3 + 2v K 5 A + 21 (45)

For the stress free surface z=H which lies ahead of the com-

pacti n fron-t, the quantity P is set equal to zero in

Eqs. i(4V)- (44).

3. Continuity conditions on the interface behind the

compaction front (z=H, 9 > 0)

The continuity conditioas on this interface are given

-by Eqs. (2-2). The equations on the normal and tangential I
sitresses at this interface are given in finite difference

oxrm by the relations

Al -i+ 2 2 + 2+2

1p 22 1)1
Mu ) u I+ +)h - h i+l,j i-i, h +ij2. a b

A + 2Pi A + 2il
-(2 + V ha 1 )vi_ 1  (46)

- m b -,J ~ b i ~ -

:+ )u,j b r + h i+1,j vi-l j]

V1 +2
+ui  +- u (47)

ha i h-b ,j+l

Equations (46)-(47) are solved for the displacements u. and

Vi 1 ,, thus giving the displacements on the surface z=H.
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A special case occurs for the pivotal poimt ighich li-es

both ou the compaction front and on the intzerfa.ce. At thiz

point, one-sided forward differences must be used im the

expression for the Z/3 operator and Eqs. (46)-(47) become-

A + 211 X-l+2h1

(I + I 1  2  2
' - b h ) 'j + br a b

A2  + h2 'A A2

1  2  1 2
)v +-i. A~ -v

a~ ~ bb V~ n 1 I. b LJ

+ a(b bi h jij- -1 h 'Il. j+"~-h

Equations (48)-(49) may be solved for the displacements

ui j and vi j at the point in quetion

4. Special case for point which is both on tze surface z='D

and the compaction front, Fig. 12

In order to express the requirement that the stress it,

the z-direction, a 1 at the point Q, (i,j) in Fig. 12 bezz

equal to -P, it is necessary to define an operator for a/Dz

at this point. This is done by utilizing a fictitious point

M with coordinates (i,j+l) and displacements u M and vM

The boundary conditions at the surface, Eqs. (18)-(19) are

written in terms of the four unknown displacements ui

vi j , u M and vM

25
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I M-XI

FIG. 12-SPECIAL CASE FOR PO~NTQ

26



A + -1
2U ,Ih - (50)Ozz,ij h [i+l,j - i'j] + i t b vM

a - 1 + [v ' 51
zx,ij -U U (51)

An additional two equations on these displacements- are

obtained from the boundary conditions on the normal and;

tangential stresses on the compaction front, Eqs. (42).

These conditions are applied at the auxiliary point Q,

(i + ?, j + k) of Fig. 12 in terms of averages, of the dis-

placements at the surrounding points (i,j), (i+,j).,,

(i+l,j+l) and (i,j+l). The resulting equations are of the

form of Eqs. (42) in which the quantities P, Q and R are

given by

u U l +  + U - u M + lv , -- v

2hr  2h b
*r b

(52)

-u u v +-v v -

i+lJ+l i+l, ui,1 - M v i+l,j+! 2v j -i+l,j

2h 2hb

(53)

uM + ui+l1j+1  ui j  Ui+l~j + Vi+l°.+l + vi+lj vi j - v M
2h b  2h r

(54)

Equations (42), (50) and (51) are solved for the four unknown

displacements, thus giving the boundary values of the dis-

placements u and v at this special point.
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. As pgroximateboundary conditions at large iU and z,
Figures 6 and 7

In SectionI, the method used to truncate the infinite

se,.Of-wi-te difference equations on the displacements was

de scr--bed -tE-ssentiaily, this was done by applying approxi--

, mat&7b~undaty conditions at pivotal points on the boundaries

of a rectangu-ar domain BCDFF located at large distances

(1 ,)and z) from the domains of prime interest near the com-

" paction fr-ont. These displacement quantities on the bounda--

ries BCD.EF of the subseismic half-space were obtained by

-direct integration on the computer of the corresponding

quant ittes from the Cole-Huth solution for a point load P

-moving w i-th subseismic velocity on the surface of a homo-

ganeous isotropic elastic medium, Ref. [3]. The Cole-Huth

.d-isplacements for the point load are given uy Eqs. (25) and

(26) of Ref. [31 and are repeated here for convenience:

K I !K 2i- 1 0L TK2 0T
u -P - (1 _)- P (55)

V [K2 In rT - L  I 2n rL ]  (56)

wh ere

2
2 M

1 = (57)
2

2 L 2(58)

2 (2 - T) - a
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2w

L  ( - (L T T )  (59)

and

-L L L

(ieT) (0

T =x + is Tz = rTe (60)

0 L  ; T  7r

The distributed loads of the present problem were

resolved into a set of equivalent concentrated loads for

the determination of these boundary conditions. A com-

prehensive study was made in order to assess the sensitivi-ty

of the displacements at pivotal points on the rectangular

boundary BCDEF, on this resolution procedure. This in-

volved a study of the influence in the half plane of the

resolution of the distributed load into n concentrated loads

of magnitude P/n spaced at a distance of Ax units apart.

The results showed that the resolution of the distributed

loads into n concentrated loads does not practically in-

fluence the displacements of points located at distances of

15 to 20 Ax from the central loading point, in the horizontal

direction, and 20 to 25 Ax in the vertical direction. Hence,

this concentrated load resolution approach was utilized for

the pres ,.it layered problem.
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6. Iterative method for the solution of the system of linear

a1-ebraic equations using the over- and underrelaxation
• , technique

The over- and underrelaxation iteration technique was

* utiiUzed in the solution of the system of simultaneous algebraic

equ&itions on the displacements. This approach is described in

de tAil in Ref. [9] and will be outlined in this section.

Assuming that the values of the displacement field at the n-I

and nth cycles are known, a set of starting values for the kn+l)

cycle, u'i v' can be obtained by means of a linear interpolation

(underrelaxation) of these previous values

u, = WU(n) + (1-W) u(n-l)
Wo < 1(61)

Vt = Wv (n) + (i-W) v(n - l)

or a linear extrapolation with w > 1 (overrelaxation). The

(n) (n)
value of the parameter w = 1 would result in using u ( v

th
the values of the displacement from the n iterative cycle

as the starting values for the n+l cycle. Using the values

of u' and v', Eqs. (61) as starting values, the values of

u (n+l) and v (n+l) are obtained for the n+l cycle.

From the theory of matrix iterative analysis, it may be

shown that the relaxation factor w should be chosen according

to the following requirements:

(1) There exists a limiting optimum value w0 for which

the system converges most rapidly. If w > w0 9 the
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system converges, but with an oscillating pattern

with respect to successive vaJues of u and v

a highly undesirable convergence for a digital com-

puter since it can lead to unacceptable arithmetic

conditions. Consequently, w should lbe chosen to be

smaller than this limiting val,,e W

(2) The value of w0 depends on the grid size and decreases

when the minimum spacing between two consecutive

points is decreased.

(3) For large grids in the present layered problem, W0

was found experimentally to be less than unity, thus

requiring the use of underrelaxation, rather than

overrelaxation.

(n) (ni)
(4) The value of w varies as u and v approach their

respective true values as the number of iterations n

becomes large. It is therefore advantageous to use

a variable W(n) in the calculations in order to speed

the rate of convergence.

7. Finite difference stress - displacement relations

Once the displacements u and v have been obtained by the

iteration, the stresses are computed using the stress-dis-

placement relat-ons in finite difference form:
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ui~ - Ul~ v. - v.

* =(X 2 ") i+1± ih1 ] + X[ i~~ i,j- 1 (2_ + b -](62)
b 1r h + h

ra b

u -u - + ( + 2 j+_ (63)
- Z + h h + hb

u iz J+l u i,_i-i + i+l,j V 1-l -] (64)
" z = u[ h h

a b hr +h£
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SECTION IV

NUMERICAL RESULTS AND DISCUSSION

This section presents a set of numerical results for the

case of a progressing surface load with a step distribution

in time. Results are presented for a typical configuration

that has the following 'material and geometric constants:

c = 5,000 ft/sec
P

V = 0.25

2 4
P,= 2.85 lb sec /ft

C = 8,000 ft/sec
2

V2  = 0.25

2 4
P2= 3.80 lb sec /ft

H = 100 ft

P = 1 lb/ft
0

V 2,600 ft/sec

It is of interest to consider the typical variation of the

stresses azz , az and a at points in both the layer and

the half-space, Figs. 13-15 show the variation of these

stresses with at the depths z = 60 ft and z = 80 ft in the

layer. It is seen that in each case, the stresses rise

sharply behind the shock front, oscillate and then decay to
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-.. L - - - - -L

the following limits: azz,L -PO , z,L 0 an6 a0,L 0.

The peak value depends upon the velocity of the moving load

and increases with increasing Mach numbers M and MS . TheseP S

s-tress amplifications are increased as the transonic case

x 1 is approached.

FIgures 16-18 show the variation of the stresses U ,zz

-0 and - versus C at points in the underlying half-space at

depth z = 260 ft and z = 800 ft. In this case, the peak values

aze located on a line that is "nclined; the peak values for the

deeper points occur for smaller values of E, i.e., they run

ahe-ad of the compaction front in the layer. Again, the peak

values inc-ease as M and 1! increase and approach high values i
P S

as M 1, i.e., the sonic point is approached.

s
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